
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Suboptimal Data Can Bottleneck Scaling

Anonymous Authors1

Abstract
Deep learning has been shown to reliably improve
in performance on supervised learning tasks when
scaling up data, compute, and parameters. In this
work, we argue that properly understanding the
impact of scale requires a nuanced understand-
ing of dataset composition. Towards this end, we
design experiments in the domain of offline rein-
forcement learning to disentangle the effects of
data quantity and quality. Our results comprehen-
sively confirm that performance is bottlenecked
by the quality of the data, even in the limit of pa-
rameters, compute, and dataset size. Furthermore,
we show that the performance of offline reinforce-
ment learning algorithms obeys reliable scaling
laws in these settings, allowing performance-at-
scale to be extrapolated from a smaller set of ex-
periments.

1. Introduction
In recent years, deep learning has been shown to be a pow-
erful technique, obtaining state-of-the-art performance on
a wide variety of benchmarks. Central to the success of
deep learning is its ability to improve with scale: increasing
the amount of data, parameters, and computation spent on
a deep learning algorithm translates into reliable improve-
ments in generalization (Nakkiran et al., 2021; Kaplan et al.,
2020). Thanks to Moore’s law and related economic factors,
the amount of compute available with which to train deep
learning models has increased rapidly with each passing
year. Large models such as GPT-3 (Brown et al., 2020) and
DALL-E 2 (Ramesh et al., 2022) have demonstrated that
neural networks can acquire remarkable capabilities simply
by scaling up existing methods.

In the deep learning literature, it is common to characterize
datasets along a single scalar axis: size. This metric is a
simple and effective way to capture an important dimension

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

of how datasets impact performance. In particular, when a
dataset is drawn as an IID subset of some underlying data-
generating process (as is most often the case for academic
machine learning), the law of large numbers ensures that
all datasets of the same sufficiently-large size are nearly
identical.

However, the size of a dataset is ultimately a coarse descrip-
tion of its contents. It is natural to want to understand the
interaction between datasets and learning in richer detail.
As a first step towards this goal, we propose to consider
a dataset not just in terms of its size, or data quantity, but
also its data quality. Concretely, in this work, we study
the question: what are the limits of learning from low-
quality data? This question is of particular interest thanks
to the empirical success of models trained on Internet data
(Ramesh et al., 2022; Brown et al., 2020). These models
have been shown to have impressive capabilities, such as the
ability to generate photorealistic images in a variety of styles
(Ramesh et al., 2022), or demonstrate simple mathematical
reasoning (Wei et al., 2022). Scaling laws (Kaplan et al.,
2020) predict that these capabilities will continue to increase
as the models are made ever larger. However, their source
of training data, the Internet, can be reasonably considered
to be a high-quantity, low-quality dataset. Understanding
of the limitations of learning from low-quality data there-
fore has implications for the capabilities we anticipate these
models to eventually acquire.

A difficulty in answering this question is that the quality of
a dataset is a less well-defined concept than its size. Quality
is task-dependent: the same dataset might contain high-
quality data for one task, but low-quality for another. In
order to operationalize our motivating question, we turn to
the setting of offline reinforcement learning (Levine et al.,
2020). The goal of offline reinforcement learning, which
we formally describe in Section 2.2, is to learn a policy
from previously-collected data. The expected return of the
learned policy serves as a quantitative measurement of a
model’s capabilities. In this setting, high-quality data has a
natural interpretation as data collected by a high-performing
expert.

For reinforcement learning environments, we have complete
control over the data generation process. Any dataset can
be constructed by simply deploying existing agents in the

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Suboptimal Data Can Bottleneck Scaling

environment and recording their interactions. We therefore
can train models for offline RL in the infinite-data setting,
where no datapoint is ever seen by the model more than
once. This allows us to assess their asymptotic performance
in the limit of compute and data. A complete description of
our experimental setup is given in Section 3.

We find that in all cases, asymptotic performance is depen-
dent on the quality of the dataset; no current algorithm is
capable of surpassing the best expert by an arbitrary margin.
To establish that these results are broadly applicable, we
study five different algorithms on nine different environ-
ments across two different domains at a variety of model
sizes, and see similar trends across all of them. These re-
sults are described in detail in Section 4. Furthermore, we fit
broken neural scaling laws (Caballero et al., 2022) to these
outcomes, and that find performance scales predictably, anal-
ogously to supervised learning.

Our central result is a comprehensive empirical confirmation
that low-quality data can be a bottleneck to scaling. We also
make the following auxiliary contributions: an experimental
procedure for evaluating algorithms for offline reinforce-
ment learning which disentangles data quality from other
factors; an empirical comparison between the performance-
at-scale of current algorithms on several domains; and a
demonstration that the performance of offline reinforcement
algorithms obeys reliable scaling laws.

2. Background
2.1. Deep Learning

Deep learning (Goodfellow et al., 2016) is a family of algo-
rithms for function approximation, which is defined as the
problem setting whose goal is to learn a function f̂ : X → Y
that most closely resembles some (possibly stochastic)
ground-truth function f : X → Y , based on a dataset D
of input-output pairs D = ⟨(x0, y0), (x1, y1), ..., (xN , yN)⟩
where each xi ∈ X and each yi = f(xi). In particular, it
fits a parameterized function given by a deep neural net-
work (LeCun et al., 1995) by using stochastic gradient de-
scent (SGD) to minimize some objective (Robbins & Monro,
1951; Rumelhart et al., 1986).

2.2. Offline Reinforcement Learning

In offline reinforcement learning (RL), the environment is
represented as a Markov Decision Process (MDP), denoted
M := ⟨S,A,R,P, γ, ρ⟩, with state space S, action space
A, reward function R, transition function P , discount γ,
and start-state distribution ρ. Policies π ∈ Π map states to
actions. A policy interacting with the environment yields a
sequence of states, actions, and rewards known as a trajec-

tory. Starting in any initial state s0,

at ∼ π(st) rt ∼ R(st, at) st+1 ∼ P (st, at)

The return of a policy π starting from some state s0, denoted
G(π, s0), is a stochastic function which yields a sample of
the discounted sum of rewards along the trajectory,

G(π, s0) =
∞∑
t=0

γtrt

The value of a policy π is defined as Es∼ρ[G(π, s)]. The
goal of offline reinforcement learning is to find the policy
with the highest value, given only a dataset D containing a
collection of trajectories.

2.3. Scaling Laws

Neural scaling laws are functional forms that model and ex-
trapolate the scaling behaviors of artificial neural networks.
A scaling behavior is a closed-form expression relating a
performance metric to an attribute of the learning problem,
typically the number of model parameters, the amount of
compute used for training, or the training dataset size.

Previous work on scaling laws by Kaplan et al. (2020) show
that the loss of a language model scales as a power-law with
model size, dataset size, and the amount of compute used
for training, and that this relationship holds across several
orders of magnitudes. The reliability is such that a param-
eterized power-law model fit to the first several orders of
magnitude can extrapolate to larger orders of magnitude,
on several dimensions of variation. Subsequent work ex-
tended this result to a variety of settings and considers other
functional forms (Hoffmann et al., 2022; Aghajanyan et al.,
2023; Maloney et al., 2022; Caballero et al., 2022).

Broken Neural Scaling Laws (BNSL) are neural scaling laws
that have been shown to accurately model and extrapolate
the scaling behavior of deep RL algorithms, in addition
to the scaling behavior of many other things that involve
artificial neural networks (Caballero et al., 2022). In this
work, we use BNSL to model and extrapolate the scaling
behavior of offline deep reinforcement learning algorithms.

3. Experimental Design
3.1. Datasets In More Detail

A dataset is an essential ingredient of both supervised learn-
ing and offline reinforcement learning. The contents of the
dataset directly determine what solution is learned, and per-
formance of any modern algorithm is highly dependent on
the contents of the dataset it was trained on. A powerful
approach to improving capabilities is collecting more data
for training.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Suboptimal Data Can Bottleneck Scaling

Figure 1. Comparison of performance of algorithms on PyBullet and Atari.

Many previous works study how datasets impact perfor-
mance. However, most current literature (Kaplan et al.,
2020; Maloney et al., 2022; Chen et al., 2021; Kumar et al.,
2023) considers only a one-dimensional axis of dataset qual-
ity: dataset size, as measured by the number of distinct
datapoints in the training set. In general, this coarse mea-
surement is far from the complete picture. For example,
duplicating every point in a dataset would double its size,
but not improve performance at all; this follows from the
fact that the distribution of minibatches sampled from the
dataset during training would be unchanged, and thus, the
function learned will be identical. In this work, we seek to
understand the dataset in more detail.

To this end, we propose a natural generative process for
modeling how a dataset might come to be. In our frame-
work, some number of experts each provide some number
of datapoints, which together form the dataset. Each ex-
pert yields datapoints which follow a particular distribution,
and so the overall distribution from which training points
emerge is the mixture of these distributions.

It is natural to see how this model applies to offline rein-
forcement learning, where experts take the form of policies,
and datapoints come from environment interaction. We also
believe our model is also a natural framework to understand
datasets from supervised learning. For example, Internet-
scale datasets (Schuhmann et al., 2022) such as those used
to train GPT-3 and DALLE-2 can be understood as coming
from a mixture of individual human experts, each choosing
which text and images to upload onto the Internet according
to their own idiosyncratic distribution.

Under this model, we can characterize datasets using three
different axes: size, diversity, and quality. Dataset size
measures the number of datapoints available to be seen
during training. Dataset diversity measures the number of
distinct experts used to generate the datapoints. Finally,

dataset quality measures the extent to which the experts
which generated the dataset produce valuable data. In the
context of offline reinforcement learning, where each expert
is a policy and the goal is to learn a high-value policy, we
consider a high-quality dataset to be one which contains
trajectories from high-value experts.

3.2. Constructing Datasets

The primary goal of our research is to assess the extent
to which performance can improve by increasing dataset
scale, without increasing its quality or diversity. To this end,
we investigate the relationship between scaling compute,
parameters, dataset size, and performance, under various
levels of dataset quality. In order to construct datasets of
systematically varying quality for each environment, our
experiments require three steps of setup.

• Acquire expert policies. Obtain a diverse set of expert
policies, with a wide variety of skill levels. In our
experiments, we get these from various checkpoints of
an online reinforcement learning algorithm.

• Collect data. For each policy, collect a large number
of episodes of interaction, storing it in a dataset. Addi-
tionally, estimate the value of each policy as the mean
return of the collected episodes.

• Construct datasets of varying expertise. For each
desired expertise level, filter the set of policies to ex-
clude any whose value is greater than a given amount,
and further filter it to exclude all but P policies, sub-
sampled evenly.1 The dataset of that expertise level is

1This second filtering step ensures that datasets of all expertise
levels come from the same number of distinct experts, ensuring
that policy diversity is not a confounding factor for performance.
In this work, we fix P = 100, and leave measurement of the

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Suboptimal Data Can Bottleneck Scaling

defined to be the concatenation of all data collected by
those policies which remain.

Our notion of expertise is natural, because many real-world
data distributions will come from many experts with varying
levels of performance. We hypothesize that any similarly-
reasonable approach to defining expertise would yield quali-
tatively similar results, and hope future work will validate
this claim.

3.3. Environment Details

We run experiments in two popular benchmark domains:
robotic control in PyBullet physics simulator (Coumans
& Bai, 2016–2021), and game play on Atari games in the
Arcade Learning Environment (Bellemare et al., 2013).

3.3.1. PYBULLET

We evaluate four PyBullet environments: HalfCheetah, Hop-
per, Walker2D, and Ant. In order to simplify implemen-
tation, we discretize the action space using a bang-bang
control scheme (Bellman et al., 1956; Seyde et al., 2021).
For an environment whose action space is of dimension |D|,
this yields 2|D| discretized actions. To add stochasticity,
we sample each dimension of the selected action from a
uniform distribution between either (0.8, 1) or (−1,−0.8).

To acquire our set of diverse expert policies, we run Stable-
Baselines3 PPO (Raffin et al., 2019) for 2,000,000 steps,
checkpointing every 20,000 steps. We repeat this for five
seeds, yielding 500 policies overall.

3.3.2. ATARI

We evaluate on five commonly-studied Atari 2600 games:
BREAKOUT, ENDURO, MS PACMAN, PONG, AND SPACE
INVADERS. We use the DQN replay dataset released by
Agarwal et al. (2020). This dataset was collected by running
5 independent runs of DQN (Mnih et al., 2015) on each
game, and recording all interactions for each run. We use
the first 40 million environment steps in each of the runs
and divide each of these runs into 40 chunks, for 200 total
chunks, and treat each chunk as having been collected by
a single stationary policy.2 For efficiency reasons, we use
the tfds version of the dataset (Gulcehre et al., 2020) rather
than generating this ourselves.

impact of this factor as a topic for future work.
2In reality, due to how DQN is implemented, each chunk con-

tains episodes from a constantly-evolving nonstationary policy.
Making this assumption saved significant computational expense,
and we do not believe it impacted our results. This assumption
is further justified by the fact that, for data collected by any non-
stationary policy, there is a stationary policy with the same data
distribution (Laroche et al., 2022).

3.4. Algorithms

We study three well-known families of offline reinforcement
algorithms: imitation learning, conditional imitation learn-
ing, and dynamic programming. We select a well-known
algorithm from each family to test.

3.4.1. IMITATION

A simple baseline for offline reinforcement learning is im-
itation learning (Hussein et al., 2017), which reduces the
problem of decision-making to a simple classification task.
Each state is labeled with the action taken by an expert in
that state. As is standard in supervised learning, we mini-
mize the negative conditional log-likelihood of the labels.
A well-trained model will choose actions according to the
same policy as the data-generating experts.

When a dataset contains trajectories from policies of varying
ability (as ours do), an agent trained to imitate policies in the
dataset will sometimes take bad actions. A straightforward
way to mitigate this limitation is to filter out bad actions, and
only learn to imitate good actions. We refer to this family
of methods as filtered imitation. A standard way to do
this is filter out actions which do not belong to high-return
trajectories, which we call return-filtered imitation (RFI).
This algorithm is commonly used as a baseline for offline
reinforcement learning (Chen et al., 2021; Brandfonbrener
et al., 2022). In our experiments, we filter out trajectories
with returns below the top 10%.

3.4.2. CONDITIONAL IMITATION

Another approach to offline reinforcement learning, which
we refer to as conditional imitation, is to train an imitation-
learning agent which is additionally conditioned on some
goal or outcome. This family of algorithms has recently
grown in popularity, and has also been studied as upside-
down RL (Štrupl et al., 2022), decision transformer (Chen
et al., 2021), and return-conditioned supervised learning
(Brandfonbrener et al., 2022).

An important algorithmic decision in conditional imitation
is deciding what to condition on. In offline reinforcement
learning, a common choice is to condition on return, an al-
gorithm which we study in this work as return-conditional
imitation (RCI). While a variety of conditioning schemes
are possible (Brandfonbrener et al., 2022), in this work, we
study the simplest approach: condition each state within a
trajectory on the sum of rewards across the entire trajectory.

A well-trained return-conditional imitation agent can em-
body a variety of policies when prompted with the cor-
rect context. For example, an agent trained via return-
conditional imitation can be prompted to act in a way that
acquires either high or low returns. Crucially, such agents
could in principle achieve arbitrarily good performance by

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Suboptimal Data Can Bottleneck Scaling

Figure 2. Tradeoff between model size and dataset quality

simply conditioning on an arbitrarily high return. Of course,
this requires generalization beyond the data distribution,
which may be challenging. An important open question
is to characterize the conditions and extent to which this
generalization is possible.

In this work, we always choose our conditioner based on
the returns in the training data. In reporting our results, we
describe our conditioners using real numbers, e.g. c = 1.0.
This is translated into the actual value used to condition
the model according to Gmin + c(Gmax − Gmin), where
Gmin,Gmax correspond to the minimum and maximum re-
turns of any trajectory present in the training data.

3.4.3. DYNAMIC PROGRAMMING

The final family of algorithms for offline reinforcement
learning that we consider is dynamic programming (Sutton
& Barto, 2018). These algorithms estimate the value of each
state, and iteratively apply the Bellman optimality operator,
approaching an optimal fixed point. A typical implementa-
tion, inspired by online deep reinforcement learning algo-
rithms like DQN (Mnih et al., 2015) or Rainbow (Hessel
et al., 2018), parameterizes a Q-value function using a neu-
ral network and minimizes the expected Bellman error on
transitions sampled from the dataset.

In the offline RL setting, the fixed point reached by a dy-
namic programming algorithm has poor guarantees, unless
it incorporates pessimism or a policy constraint (Buckman
et al., 2020). This is reflected in the practical performance
of these algorithms as well (Fu et al., 2020; Gulcehre et al.,
2020). Therefore, we study Conservative Q-Learning
(CQL) (Kumar et al., 2020), a dynamic programming al-
gorithm that incorporates pessimism and achieves state-of-
the-art performance (Kumar et al., 2023). CQL implements

pessimism by adding an additional regularizing term to the
loss, which penalizes the value function for predicting high
values on actions that do not appear in the dataset. The de-
gree of pessimism is controlled by a hyperparameter α ≥ 0,
where α = 0 corresponds to the unpenalized objective.

4. Results
For each of our environments, we constructed five sets of
experts as described in Section 3, corresponding to five
expertise levels. For each set of experts, we trained models
on an infinite stream of expert interactions until convergence,
at a variety of model sizes.

Our first domain is PyBullet (Coumans & Bai, 2016–2021),
where we study two algorithms: RFI, and RCI with various
conditioners. Both algorithms use a simple feedforward
network architecture; the RCI architecture has extra input
dimensions to represent the return, and uses a square-wave
embedding function to encode the scalar return into a 32-
dimensional vector. We scale the network to have parameter
counts between 10K and 300M, adjusting the network width
to maintain an aspect ratio of 256. We evaluate data exper-
tise values in {0.2, 0.4, 0.6, 0.8, 1}. Full implementation
details for the PyBullet experiments can be found in our
open-source repository.3

Our second domain is the ALE (Bellemare et al., 2013). We
study two algorithms in this domain, RCI and CQL. Based
on the results of Schmidt & Schmied (2021); Agarwal et al.
(2022), we base our offline agents on top of distributional
Rainbow (Hessel et al., 2018) combined with Impala-CNN,
which corresponds to a 15-layer ResNet. To vary model
capacity, we scale the feature dimension of every layer by

3github.com/anonymous

github.com/anonymous

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Suboptimal Data Can Bottleneck Scaling

Figure 3. Ablatinon study for different conditioning values for RCI for HalfCheetah and Ant.

factors of {0.5, 1, 2, 3, 4, 6}, resulting in parameter counts
ranging from 600K to 75.8 M. We evaluate data expertise
values in {0.25, 0.5, 0.75, 1}. For CQL, we set the parame-
ter α = 0.1. Each game dataset contains a fixed number of
policies and episodes per policy, resulting in total of 10,000
episodes. This results in varying number of data points per
game, and as a result, different total numbers of gradient
steps. For clarity, we plot the scaling curves using fraction
of training gradient steps on the x-axis, as needed.

4.1. Scaling Plots

The limit of performance in the infinite-data setting for a
particular model size gives the asymptotic limit as compute
and data are scaled. In each setting, for each algorithm, we
run this experiment at several model sizes. Results in several
settings are visualized in Figure 4, while more extensive
results are given in Appendix A (Figures 8,10).

From these plots, we can see how these algorithms scale
with compute and data, as well as with increase scale. In
general, our results are quite consistent: almost all algo-
rithms benefit from additional training in almost all settings.
One notable exception is in the case of small RCI models
trained on low-expertise data, especially when conditioned
on returns larger than seen in training, e.g. in Figure 9.

4.2. Algorithm Comparison

We can also compare the performance of various algorithms
as we adjust the quality of the data. In Figure 1, we compare
the performance of our algorithms, when scaled to conver-
gence in both parameters and compute/data, on each of our
experimental settings.

The clearest trend is that the performance-at-scale of these
algorithms is closely tied to the performance of the best

data-generating expert. Although conditional imitation can
sometimes surpass the best expert slightly, neither algorithm
tested in the PyBullet domain is consistently capable of
surpassing the best expert. In contrast, on the Atari domain,
well-tuned CQL consistently outperforms the best expert
in the dataset by a significant margin, especially at scale
and at low expertise. However, the performance-at-scale of
CQL at any fixed expertise level still seemingly reaches an
asymptote in all settings, at which point a further increase
in performance requires an increase in dataset quality.

In Atari, RCI still reaches a performance-at-scale asymptote
at all expertise levels, but uniquely among our results, this
asymptote does not consistently increase with improved data
quality. We plan to investigate this surprising result further
in the future.

4.3. Scaling Model Size vs Dataset Quality

Consider a practical scenario where one has a particular
budget to spend on improving the performance of a model.
Should that budget be spent on a larger model, or higher-
quality data? In this section, we visualize the relative rate
of improvement between scaling up the model size, and
improving the quality of the dataset by improving the quality
of the data-generating expert.

In Figure 2, we can see that in this setting, the performance
gained by improving the expertise level of a dataset far
exceeds the performance gained by scaling up the model
size. In most cases, a relatively modest increase in the
performance of the best data-collection expert has greater
impact on performance of the trained model than multiple
orders of magnitude increase in model size. Results for two
settings are given in Figure 2, while more extensive results
are given in Appendix A. We note that the scale of effect is

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Suboptimal Data Can Bottleneck Scaling

Figure 4. Data, compute, and parameter scaling for algorithms on PyBullet and Atari. All runs use 8 seeds.

Figure 5. Scaling Laws for RCI HalfCheetah, Ant, Hopper, Walker2D respectively

likely to be algorithm and domain specific, but expect the
general principle to be broadly applicable.

4.4. Ablation On Conditioning

An important choice for the RCI algorithm is what return
to condition on at inference-time. If the requested return is
low, the performance will be low, but if the requested return
is too high, generalization may fail, leading to a complete
performance collapse. In this section, we study the effect
of different conditioning values for the Return Conditioned
Imitation Learning algorithm.

In Figure 3, we highlight the results for the RCI algorithm
for HalfCheetah and Ant, while more extensive results are
given in Appendix A.

It can be seen from these plots that conditioning on returns
which are less than the best expert in the dataset behaves as
requested, and such, performance gradually increases as the
conditioner is increased. However, beyond the best expert,
where we rely completely on extrapolative generalization,
this trend ends. Performance when conditioned outside of
the training range is noisy and unpredictable, oftentimes
collapsing, and occasionally increasing. As the conditioner
increases, this sensitivity worsens. Overall, these results do
not indicate that conditioning higher than the best expert is
a reliable way to improve performance, even at the limit of
scale.

5. Fitting Scaling Laws
Given the reliable scaling behavior found in supervised
learning (Kaplan et al., 2020), it is natural to explore whether
it is possible to extrapolate the performance of scaling data,
compute, and parameters under a fixed level of data quality.
If this is true, it becomes plausible to use smaller-scale runs
to estimate the limiting behavior of larger runs; for example,
as a low-cost way to determine whether to scale to larger
models, or spend resources improving data expertise.

To this end, we explore whether our performance-at-scale re-
sults could have been predicted by scaling laws. We fit Bro-
ken Neural Scaling Laws (BNSL) (Caballero et al., 2022)
given by the functional form:

y = a+

(
bx−c0

) k∏
i=1

(
1 +

(
x

di

)1/fi
)−ci∗fi

To fit the above functional form we find the constants
(a, b, c0, c1...ck, d1...dk, f1...fk) that minimize the MSLE,
mean squared log error between the predictions (i.e. the
y values) of BNSL and the experimental returns. We first
perform a grid search using scipy.optimize.brute to find the
initial values. These values are then used as initialization
for the nonlinear least squares (NLS) algorithm.

We use the numerically stable variant of MSLE for the above
optimization given by:

MSLE =

n∑
i=1

((log(yi + 1)− log(ŷi + 1))2)/n

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Suboptimal Data Can Bottleneck Scaling

Overall, we find that this procedure is successful, and we
are able to extrapolate to the performance of larger models
in a variety of settings. Several examples of scaling curves
fit by our model are given in Figure 5, and further examples
in Appendix A (Figure 12, 11,13,14).

6. Discussion and Conclusions
We have shown via experiments across multiple domains
that suboptimal data can bottleneck scaling. This result is, to
a certain extent, unsurprising: it seems obvious that without
high-quality data on a particular task, an agent is inevitably
limited in its ability to perform that task. However, the im-
pressive capabilities of highly-scaled deep neural networks
give reason for doubt. Powerful generalization has recently
been found to be capable of surprising feats, and it was
possible that the same would be true here. However, our
experiments confirm the intuition that, indeed, near-expert-
level data is required for expert-level performance, even
as deep-learning-based agents are scaled to their limits of
compute, parameters, and dataset size.

Hoffmann et al. (2022) demonstrated that efficient scaling
requires increasing the compute, data size, and parameters
at the correct ratio. If one of these factors is increased more
slowly, it will bottleneck improvement, leading to diminish-
ing returns from scale on the other factors. Our conclusions
can be interpreted as an extension of these results, showing
that that data quality is another important dimension of vari-
ation that behaves in this the same way. If data quality is not
sufficiently high, this will bottleneck learning and impede
returns to scale on compute, data size, and parameters.

Currently, large language models are not trained with any
particular task in mind. However, it is straightforward to
define any number of downstream tasks using natural lan-
guage. Models tested on tasks demonstrate good scaling
with respect to these goals. Our work indicates that these
Internet-trained models may at some point become bottle-
necked by data quality on some of these tasks, if there is not
enough expert data for that task available on the Internet.

When bottlenecked by any of compute, parameters, or data
size, there is a clear path forward. But when the bottleneck
is expert data, the road is less clear. One way to solve this
problem is to simply find a high-performing expert: for
example, in offline reinforcement learning, one might hire
expert humans to complete the task, record their actions,
and add this to the dataset. However, this approach is not
scalable. A more autonomous method would leverage the
knowledge of model itself to source its own expert data. If
our offline RL agent learns a policy which outperforms the
best data-collection expert in its dataset, then by interacting
according to its policy and adding that data to the dataset,
the quality of its dataset will be improved. If this feat can

be repeated, the agent can bootstrap itself into arbitrarily-
high performance. This, of course, is precisely the setting
of online reinforcement learning (Sutton & Barto, 2018).
Thus, one interpretation of our contribution is to motivate
the online reinforcement learning setting, in light of the im-
pressive capabilities of supervised learning models trained
at scale.

References
Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-

mistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, pp. 104–
114. PMLR, 2020.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,
and Bellemare, M. G. Beyond tabula rasa: Reincarnating
reinforcement learning. Advances in neural information
processing systems, 2022.

Aghajanyan, A., Yu, L., Conneau, A., Hsu, W.-N., Ham-
bardzumyan, K., Zhang, S., Roller, S., Goyal, N.,
Levy, O., and Zettlemoyer, L. Scaling laws for gen-
erative mixed-modal language models. arXiv preprint
arXiv:2301.03728, 2023.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellman, R., Glicksberg, I., and Gross, O. On the “bang-
bang” control problem. Quarterly of Applied Mathemat-
ics, 14(1):11–18, 1956.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? arXiv
preprint arXiv:2206.01079, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Buckman, J., Gelada, C., and Bellemare, M. G. The impor-
tance of pessimism in fixed-dataset policy optimization.
arXiv preprint arXiv:2009.06799, 2020.

Caballero, E., Gupta, K., Rish, I., and Krueger, D. Broken
neural scaling laws. arXiv preprint arXiv:2210.14891,
2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Suboptimal Data Can Bottleneck Scaling

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016–2021.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Col-
menarejo, S. G., Zolna, K., Agarwal, R., Merel, J.,
Mankowitz, D., Paduraru, C., et al. Rl unplugged: Bench-
marks for offline reinforcement learning. arXiv preprint
arXiv:2006.13888, 2020.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):1–35, 2017.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-
tive q-learning for offline reinforcement learning. arXiv
preprint arXiv:2006.04779, 2020.

Kumar, A., Agarwal, R., Geng, X., Tucker, G., and Levine,
S. Offline q-learning on diverse multi-task data both
scales and generalizes. International Conference on
Learning Representations, 2023.

Laroche, R., Combes, R. T. d., and Buckman, J. Non-
markovian policies occupancy measures. arXiv preprint
arXiv:2205.13950, 2022.

LeCun, Y., Bengio, Y., et al. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Maloney, A., Roberts, D. A., and Sully, J. A solvable model
of neural scaling laws. arXiv preprint arXiv:2210.16859,
2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechan-
ics: Theory and Experiment, 2021(12):124003, 2021.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., and Dormann, N. Stable baselines3, 2019.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Schmidt, D. and Schmied, T. Fast and data-efficient training
of rainbow: an experimental study on atari. arXiv preprint
arXiv:2111.10247, 2021.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
arXiv preprint arXiv:2210.08402, 2022.

Seyde, T., Gilitschenski, I., Schwarting, W., Stellato, B.,
Riedmiller, M., Wulfmeier, M., and Rus, D. Is bang-
bang control all you need? solving continuous control
with bernoulli policies. Advances in Neural Information
Processing Systems, 34:27209–27221, 2021.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Štrupl, M., Faccio, F., Ashley, D. R., Schmidhuber, J., and
Srivastava, R. K. Upside-down reinforcement learning
can diverge in stochastic environments with episodic re-
sets, 2022.

http://pybullet.org

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Suboptimal Data Can Bottleneck Scaling

A. Additional Figures

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Suboptimal Data Can Bottleneck Scaling

Figure 6. Tradeoff between model size and dataset quality

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Suboptimal Data Can Bottleneck Scaling

Figure 7. Ablation study for different conditioning values for RCI and VCI

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Suboptimal Data Can Bottleneck Scaling

Figure 8. Scaling curves for PyBullet for RCI and RFI

Figure 9. Inverse scaling in Hopper

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Suboptimal Data Can Bottleneck Scaling

Figure 10. Scaling curves for Atari for RCI and CQL

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Suboptimal Data Can Bottleneck Scaling

Figure 11. Broken Neural Scaling Laws fits and extrapolations for Ant. Black points are mean of gray points at each model size. Red line
is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are the
mean of the light blue points.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Suboptimal Data Can Bottleneck Scaling

Figure 12. Broken Neural Scaling Laws fits and extrapolations for Half Cheetah. Black points are mean of gray points at each model size.
Red line is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are
the mean of the light blue points.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Suboptimal Data Can Bottleneck Scaling

Figure 13. Broken Neural Scaling Laws fits and extrapolations for Hopper. Black points are mean of gray points at each model size. Red
line is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are the
mean of the light blue points.

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Suboptimal Data Can Bottleneck Scaling

Figure 14. Broken Neural Scaling Laws fits and extrapolations for Walker2D. Black points are mean of gray points at each model size.
Red line is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are
the mean of the light blue points.

