Suboptimal Data Can Bottleneck Scaling

Anonymous Authors'

Abstract

Deep learning has been shown to reliably improve
in performance on supervised learning tasks when
scaling up data, compute, and parameters. In this
work, we argue that properly understanding the
impact of scale requires a nuanced understand-
ing of dataset composition. Towards this end, we
design experiments in the domain of offline rein-
forcement learning to disentangle the effects of
data quantity and quality. Our results comprehen-
sively confirm that performance is bottlenecked
by the quality of the data, even in the limit of pa-
rameters, compute, and dataset size. Furthermore,
we show that the performance of offline reinforce-
ment learning algorithms obeys reliable scaling
laws in these settings, allowing performance-at-
scale to be extrapolated from a smaller set of ex-
periments.

1. Introduction

In recent years, deep learning has been shown to be a pow-
erful technique, obtaining state-of-the-art performance on
a wide variety of benchmarks. Central to the success of
deep learning is its ability to improve with scale: increasing
the amount of data, parameters, and computation spent on
a deep learning algorithm translates into reliable improve-
ments in generalization (Nakkiran et al., 2021; Kaplan et al.,
2020). Thanks to Moore’s law and related economic factors,
the amount of compute available with which to train deep
learning models has increased rapidly with each passing
year. Large models such as GPT-3 (Brown et al., 2020) and
DALL-E 2 (Ramesh et al., 2022) have demonstrated that
neural networks can acquire remarkable capabilities simply
by scaling up existing methods.

In the deep learning literature, it is common to characterize
datasets along a single scalar axis: size. This metric is a
simple and effective way to capture an important dimension

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

of how datasets impact performance. In particular, when a
dataset is drawn as an [ID subset of some underlying data-
generating process (as is most often the case for academic
machine learning), the law of large numbers ensures that
all datasets of the same sufficiently-large size are nearly
identical.

However, the size of a dataset is ultimately a coarse descrip-
tion of its contents. It is natural to want to understand the
interaction between datasets and learning in richer detail.
As a first step towards this goal, we propose to consider
a dataset not just in terms of its size, or data quantity, but
also its data quality. Concretely, in this work, we study
the question: what are the limits of learning from low-
quality data? This question is of particular interest thanks
to the empirical success of models trained on Internet data
(Ramesh et al., 2022; Brown et al., 2020). These models
have been shown to have impressive capabilities, such as the
ability to generate photorealistic images in a variety of styles
(Ramesh et al., 2022), or demonstrate simple mathematical
reasoning (Wei et al., 2022). Scaling laws (Kaplan et al.,
2020) predict that these capabilities will continue to increase
as the models are made ever larger. However, their source
of training data, the Internet, can be reasonably considered
to be a high-quantity, low-quality dataset. Understanding
of the limitations of learning from low-quality data there-
fore has implications for the capabilities we anticipate these
models to eventually acquire.

A difficulty in answering this question is that the quality of
a dataset is a less well-defined concept than its size. Quality
is task-dependent: the same dataset might contain high-
quality data for one task, but low-quality for another. In
order to operationalize our motivating question, we turn to
the setting of offline reinforcement learning (Levine et al.,
2020). The goal of offline reinforcement learning, which
we formally describe in Section 2.2, is to learn a policy
from previously-collected data. The expected return of the
learned policy serves as a quantitative measurement of a
model’s capabilities. In this setting, high-quality data has a
natural interpretation as data collected by a high-performing
expert.

For reinforcement learning environments, we have complete
control over the data generation process. Any dataset can
be constructed by simply deploying existing agents in the

Suboptimal Data Can Bottleneck Scaling

environment and recording their interactions. We therefore
can train models for offline RL in the infinite-data setting,
where no datapoint is ever seen by the model more than
once. This allows us to assess their asymptotic performance
in the limit of compute and data. A complete description of
our experimental setup is given in Section 3.

We find that in all cases, asymptotic performance is depen-
dent on the quality of the dataset; no current algorithm is
capable of surpassing the best expert by an arbitrary margin.
To establish that these results are broadly applicable, we
study five different algorithms on nine different environ-
ments across two different domains at a variety of model
sizes, and see similar trends across all of them. These re-
sults are described in detail in Section 4. Furthermore, we fit
broken neural scaling laws (Caballero et al., 2022) to these
outcomes, and that find performance scales predictably, anal-
ogously to supervised learning.

Our central result is a comprehensive empirical confirmation
that low-quality data can be a bottleneck to scaling. We also
make the following auxiliary contributions: an experimental
procedure for evaluating algorithms for offline reinforce-
ment learning which disentangles data quality from other
factors; an empirical comparison between the performance-
at-scale of current algorithms on several domains; and a
demonstration that the performance of offline reinforcement
algorithms obeys reliable scaling laws.

2. Background
2.1. Deep Learning

Deep learning (Goodfellow et al., 2016) is a family of algo-
rithms for function approximation, which is defined as the
problem setting whose goal is to learn a function f X =Y
that most closely resembles some (possibly stochastic)
ground-truth function f : X —), based on a dataset D
of input-output pairs D = ((zo, v0), (z1,Y1), -, (TN, YN))
where each x; € X and each y; = f(x;). In particular, it
fits a parameterized function given by a deep neural net-
work (LeCun et al., 1995) by using stochastic gradient de-
scent (SGD) to minimize some objective (Robbins & Monro,
1951; Rumelhart et al., 1986).

2.2. Offline Reinforcement Learning

In offline reinforcement learning (RL), the environment is
represented as a Markov Decision Process (MDP), denoted
M := (S, AR, P,~,p), with state space S, action space
A, reward function R, transition function P, discount -,
and start-state distribution p. Policies 7w € II map states to
actions. A policy interacting with the environment yields a
sequence of states, actions, and rewards known as a trajec-

tory. Starting in any initial state s,

Q¢ ~ 7T(8t) Ty ~ R(st,at) St+1 ~ P(St, at)
The return of a policy 7 starting from some state sq, denoted
G(m, s9), is a stochastic function which yields a sample of

the discounted sum of rewards along the trajectory,
o0
G(m,50) = > '
t=0

The value of a policy 7 is defined as E,.,[G(m, s)]. The
goal of offline reinforcement learning is to find the policy
with the highest value, given only a dataset D containing a
collection of trajectories.

2.3. Scaling Laws

Neural scaling laws are functional forms that model and ex-
trapolate the scaling behaviors of artificial neural networks.
A scaling behavior is a closed-form expression relating a
performance metric to an attribute of the learning problem,
typically the number of model parameters, the amount of
compute used for training, or the training dataset size.

Previous work on scaling laws by Kaplan et al. (2020) show
that the loss of a language model scales as a power-law with
model size, dataset size, and the amount of compute used
for training, and that this relationship holds across several
orders of magnitudes. The reliability is such that a param-
eterized power-law model fit to the first several orders of
magnitude can extrapolate to larger orders of magnitude,
on several dimensions of variation. Subsequent work ex-
tended this result to a variety of settings and considers other
functional forms (Hoffmann et al., 2022; Aghajanyan et al.,
2023; Maloney et al., 2022; Caballero et al., 2022).

Broken Neural Scaling Laws (BNSL) are neural scaling laws
that have been shown to accurately model and extrapolate
the scaling behavior of deep RL algorithms, in addition
to the scaling behavior of many other things that involve
artificial neural networks (Caballero et al., 2022). In this
work, we use BNSL to model and extrapolate the scaling
behavior of offline deep reinforcement learning algorithms.

3. Experimental Design
3.1. Datasets In More Detail

A dataset is an essential ingredient of both supervised learn-
ing and offline reinforcement learning. The contents of the
dataset directly determine what solution is learned, and per-
formance of any modern algorithm is highly dependent on
the contents of the dataset it was trained on. A powerful
approach to improving capabilities is collecting more data
for training.

Suboptimal Data Can Bottleneck Scaling

Score vs Expertise Level for HalfCheetah
2000 — gFI
— Rl
1800 | —— RCl best performing
--- matches best expert

Score vs Expertise Level for Ant

2800 — RFI
— RCl

—— RCl best performing
-~ matche:

1600
@ 1400
g
1200
1000

800

80 1000 1200 1400 1600 1800 2000 1800 2000 2200 2400 2600 2800

Expertise Level Expertise Level

Score vs Exportise Lovel for Breakout

0
0

%0

100

Score vs Expertise Level for Walker2D

Score vs Expertise Level for Hopper

1600 = ~ 1800

—— ROl best performing

1600
1400 - matches best expert

1400
1200
3

1200

Score

1000
1000

80 800

600

600 80 1000 1200 1400 1600 80 1000 1200 1400 1600 1800
Expertise Level Expertise Level

Score ve Experise Level for Pong Expertise Lovel for Spacelnvaders

Figure 1. Comparison of performance of algorithms on PyBullet and Atari.

Many previous works study how datasets impact perfor-
mance. However, most current literature (Kaplan et al.,
2020; Maloney et al., 2022; Chen et al., 2021; Kumar et al.,
2023) considers only a one-dimensional axis of dataset qual-
ity: dataset size, as measured by the number of distinct
datapoints in the training set. In general, this coarse mea-
surement is far from the complete picture. For example,
duplicating every point in a dataset would double its size,
but not improve performance at all; this follows from the
fact that the distribution of minibatches sampled from the
dataset during training would be unchanged, and thus, the
function learned will be identical. In this work, we seek to
understand the dataset in more detail.

To this end, we propose a natural generative process for
modeling how a dataset might come to be. In our frame-
work, some number of experts each provide some number
of datapoints, which together form the dataset. Each ex-
pert yields datapoints which follow a particular distribution,
and so the overall distribution from which training points
emerge is the mixture of these distributions.

It is natural to see how this model applies to offline rein-
forcement learning, where experts take the form of policies,
and datapoints come from environment interaction. We also
believe our model is also a natural framework to understand
datasets from supervised learning. For example, Internet-
scale datasets (Schuhmann et al., 2022) such as those used
to train GPT-3 and DALLE-2 can be understood as coming
from a mixture of individual human experts, each choosing
which text and images to upload onto the Internet according
to their own idiosyncratic distribution.

Under this model, we can characterize datasets using three
different axes: size, diversity, and quality. Dataset size
measures the number of datapoints available to be seen
during training. Dataset diversity measures the number of
distinct experts used to generate the datapoints. Finally,

dataset quality measures the extent to which the experts
which generated the dataset produce valuable data. In the
context of offline reinforcement learning, where each expert
is a policy and the goal is to learn a high-value policy, we
consider a high-quality dataset to be one which contains
trajectories from high-value experts.

3.2. Constructing Datasets

The primary goal of our research is to assess the extent
to which performance can improve by increasing dataset
scale, without increasing its quality or diversity. To this end,
we investigate the relationship between scaling compute,
parameters, dataset size, and performance, under various
levels of dataset quality. In order to construct datasets of
systematically varying quality for each environment, our
experiments require three steps of setup.

* Acquire expert policies. Obtain a diverse set of expert
policies, with a wide variety of skill levels. In our
experiments, we get these from various checkpoints of
an online reinforcement learning algorithm.

* Collect data. For each policy, collect a large number
of episodes of interaction, storing it in a dataset. Addi-
tionally, estimate the value of each policy as the mean
return of the collected episodes.

* Construct datasets of varying expertise. For each
desired expertise level, filter the set of policies to ex-
clude any whose value is greater than a given amount,
and further filter it to exclude all but P policies, sub-
sampled evenly.! The dataset of that expertise level is

'This second filtering step ensures that datasets of all expertise
levels come from the same number of distinct experts, ensuring
that policy diversity is not a confounding factor for performance.
In this work, we fix P = 100, and leave measurement of the

Suboptimal Data Can Bottleneck Scaling

defined to be the concatenation of all data collected by
those policies which remain.

Our notion of expertise is natural, because many real-world
data distributions will come from many experts with varying
levels of performance. We hypothesize that any similarly-
reasonable approach to defining expertise would yield quali-
tatively similar results, and hope future work will validate
this claim.

3.3. Environment Details

We run experiments in two popular benchmark domains:
robotic control in PyBullet physics simulator (Coumans
& Bai, 2016-2021), and game play on Atari games in the
Arcade Learning Environment (Bellemare et al., 2013).

3.3.1. PYBULLET

We evaluate four PyBullet environments: HalfCheetah, Hop-
per, Walker2D, and Ant. In order to simplify implemen-
tation, we discretize the action space using a bang-bang
control scheme (Bellman et al., 1956; Seyde et al., 2021).
For an environment whose action space is of dimension | D|,
this yields 2/°! discretized actions. To add stochasticity,
we sample each dimension of the selected action from a
uniform distribution between either (0.8, 1) or (—1,—0.8).

To acquire our set of diverse expert policies, we run Stable-
Baselines3 PPO (Raffin et al., 2019) for 2,000,000 steps,
checkpointing every 20,000 steps. We repeat this for five
seeds, yielding 500 policies overall.

3.3.2. ATARI

We evaluate on five commonly-studied Atari 2600 games:
BREAKOUT, ENDURO, MS PACMAN, PONG, AND SPACE
INVADERS. We use the DQN replay dataset released by
Agarwal et al. (2020). This dataset was collected by running
5 independent runs of DQN (Mnih et al., 2015) on each
game, and recording all interactions for each run. We use
the first 40 million environment steps in each of the runs
and divide each of these runs into 40 chunks, for 200 total
chunks, and treat each chunk as having been collected by
a single stationary policy.? For efficiency reasons, we use
the tfds version of the dataset (Gulcehre et al., 2020) rather
than generating this ourselves.

impact of this factor as a topic for future work.

*In reality, due to how DQN is implemented, each chunk con-
tains episodes from a constantly-evolving nonstationary policy.
Making this assumption saved significant computational expense,
and we do not believe it impacted our results. This assumption
is further justified by the fact that, for data collected by any non-
stationary policy, there is a stationary policy with the same data
distribution (Laroche et al., 2022).

3.4. Algorithms

We study three well-known families of offline reinforcement
algorithms: imitation learning, conditional imitation learn-
ing, and dynamic programming. We select a well-known
algorithm from each family to test.

3.4.1. IMITATION

A simple baseline for offline reinforcement learning is im-
itation learning (Hussein et al., 2017), which reduces the
problem of decision-making to a simple classification task.
Each state is labeled with the action taken by an expert in
that state. As is standard in supervised learning, we mini-
mize the negative conditional log-likelihood of the labels.
A well-trained model will choose actions according to the
same policy as the data-generating experts.

When a dataset contains trajectories from policies of varying
ability (as ours do), an agent trained to imitate policies in the
dataset will sometimes take bad actions. A straightforward
way to mitigate this limitation is to filter out bad actions, and
only learn to imitate good actions. We refer to this family
of methods as filtered imitation. A standard way to do
this is filter out actions which do not belong to high-return
trajectories, which we call return-filtered imitation (RFI).
This algorithm is commonly used as a baseline for offline
reinforcement learning (Chen et al., 2021; Brandfonbrener
et al., 2022). In our experiments, we filter out trajectories
with returns below the top 10%.

3.4.2. CONDITIONAL IMITATION

Another approach to offline reinforcement learning, which
we refer to as conditional imitation, is to train an imitation-
learning agent which is additionally conditioned on some
goal or outcome. This family of algorithms has recently
grown in popularity, and has also been studied as upside-
down RL (§trupl et al., 2022), decision transformer (Chen
et al., 2021), and return-conditioned supervised learning
(Brandfonbrener et al., 2022).

An important algorithmic decision in conditional imitation
is deciding what to condition on. In offline reinforcement
learning, a common choice is to condition on return, an al-
gorithm which we study in this work as return-conditional
imitation (RCI). While a variety of conditioning schemes
are possible (Brandfonbrener et al., 2022), in this work, we
study the simplest approach: condition each state within a
trajectory on the sum of rewards across the entire trajectory.

A well-trained return-conditional imitation agent can em-
body a variety of policies when prompted with the cor-
rect context. For example, an agent trained via return-
conditional imitation can be prompted to act in a way that
acquires either high or low returns. Crucially, such agents
could in principle achieve arbitrarily good performance by

Suboptimal Data Can Bottleneck Scaling

Model Size vs Maximum Expert Value for RCI, Walker2D at 0.8 conditioner
200

1.e+08

1100

1000

1.e+07

Model size
1.e+06

1.e+05
Performance measured in average returns

1.e+04

639.839

918.328
Maximum expert value

1066.033 1236.64 1575.727

Figure 2. Tradeoff between

simply conditioning on an arbitrarily high return. Of course,
this requires generalization beyond the data distribution,
which may be challenging. An important open question
is to characterize the conditions and extent to which this
generalization is possible.

In this work, we always choose our conditioner based on
the returns in the training data. In reporting our results, we
describe our conditioners using real numbers, e.g. ¢ = 1.0.
This is translated into the actual value used to condition
the model according to Gmin + ¢(Gmax — Gmin), Where
Gmins Gmax correspond to the minimum and maximum re-
turns of any trajectory present in the training data.

3.4.3. DYNAMIC PROGRAMMING

The final family of algorithms for offline reinforcement
learning that we consider is dynamic programming (Sutton
& Barto, 2018). These algorithms estimate the value of each
state, and iteratively apply the Bellman optimality operator,
approaching an optimal fixed point. A typical implementa-
tion, inspired by online deep reinforcement learning algo-
rithms like DQN (Mnih et al., 2015) or Rainbow (Hessel
et al., 2018), parameterizes a Q-value function using a neu-
ral network and minimizes the expected Bellman error on
transitions sampled from the dataset.

In the offline RL setting, the fixed point reached by a dy-
namic programming algorithm has poor guarantees, unless
it incorporates pessimism or a policy constraint (Buckman
et al., 2020). This is reflected in the practical performance
of these algorithms as well (Fu et al., 2020; Gulcehre et al.,
2020). Therefore, we study Conservative Q-Learning
(CQL) (Kumar et al., 2020), a dynamic programming al-
gorithm that incorporates pessimism and achieves state-of-
the-art performance (Kumar et al., 2023). CQL implements

Model size
1e+04 1e+05 1e+06 3.e+06 1e+07 3.&+07 1e+08

Model Size vs Maximum Expert Value for RFI, Ant

2600 2

2400

— 2000

= 1800

Performance measured in average retur

1682.123 2155.087

2305.89
Maximum expert value

2416.797 2809.855

model size and dataset quality

pessimism by adding an additional regularizing term to the
loss, which penalizes the value function for predicting high
values on actions that do not appear in the dataset. The de-
gree of pessimism is controlled by a hyperparameter o« > 0,
where o = 0 corresponds to the unpenalized objective.

4. Results

For each of our environments, we constructed five sets of
experts as described in Section 3, corresponding to five
expertise levels. For each set of experts, we trained models
on an infinite stream of expert interactions until convergence,
at a variety of model sizes.

Our first domain is PyBullet (Coumans & Bai, 2016-2021),
where we study two algorithms: RFI, and RCI with various
conditioners. Both algorithms use a simple feedforward
network architecture; the RCI architecture has extra input
dimensions to represent the return, and uses a square-wave
embedding function to encode the scalar return into a 32-
dimensional vector. We scale the network to have parameter
counts between 10K and 300M, adjusting the network width
to maintain an aspect ratio of 256. We evaluate data exper-
tise values in {0.2,0.4,0.6,0.8,1}. Full implementation
details for the PyBullet experiments can be found in our
open-source repository.’

Our second domain is the ALE (Bellemare et al., 2013). We
study two algorithms in this domain, RCI and CQL. Based
on the results of Schmidt & Schmied (2021); Agarwal et al.
(2022), we base our offline agents on top of distributional
Rainbow (Hessel et al., 2018) combined with Impala-CNN,
which corresponds to a 15-layer ResNet. To vary model
capacity, we scale the feature dimension of every layer by

3qithub .com/anonymous

github.com/anonymous

Suboptimal Data Can Bottleneck Scaling

Score vs Conditioning value for different expertise levels for RCI, Ant
2800

2600

2400

2200

Score

2000

1800

Expertise=0.2
Expertise=0.4
Expertise=0.6
Expertise=0.8
Expertise=1.0

1600

1400

080 085 090 095 100 105 110 115 120
Conditioning Value

Score vs Conditioning value for different expertise levels for RCI, HalfCheetah
2000

1500

/

1000

Score

500

Expertise=0.2
Expertise=0.4
Expertise=0.6
Expertise=0.8
Expertise=1.0

-500
080 085 09 09 100 105 110 115 120
Conditioning Value

Figure 3. Ablatinon study for different conditioning values for RCI for HalfCheetah and Ant.

factors of {0.5,1,2,3, 4,6}, resulting in parameter counts
ranging from 600K to 75.8 M. We evaluate data expertise
values in {0.25,0.5,0.75,1}. For CQL, we set the parame-
ter « = 0.1. Each game dataset contains a fixed number of
policies and episodes per policy, resulting in total of 10,000
episodes. This results in varying number of data points per
game, and as a result, different total numbers of gradient
steps. For clarity, we plot the scaling curves using fraction
of training gradient steps on the z-axis, as needed.

4.1. Scaling Plots

The limit of performance in the infinite-data setting for a
particular model size gives the asymptotic limit as compute
and data are scaled. In each setting, for each algorithm, we
run this experiment at several model sizes. Results in several
settings are visualized in Figure 4, while more extensive
results are given in Appendix A (Figures 8,10).

From these plots, we can see how these algorithms scale
with compute and data, as well as with increase scale. In
general, our results are quite consistent: almost all algo-
rithms benefit from additional training in almost all settings.
One notable exception is in the case of small RCI models
trained on low-expertise data, especially when conditioned
on returns larger than seen in training, e.g. in Figure 9.

4.2. Algorithm Comparison

We can also compare the performance of various algorithms
as we adjust the quality of the data. In Figure 1, we compare
the performance of our algorithms, when scaled to conver-
gence in both parameters and compute/data, on each of our
experimental settings.

The clearest trend is that the performance-at-scale of these
algorithms is closely tied to the performance of the best

data-generating expert. Although conditional imitation can
sometimes surpass the best expert slightly, neither algorithm
tested in the PyBullet domain is consistently capable of
surpassing the best expert. In contrast, on the Atari domain,
well-tuned CQL consistently outperforms the best expert
in the dataset by a significant margin, especially at scale
and at low expertise. However, the performance-at-scale of
CQL at any fixed expertise level still seemingly reaches an
asymptote in all settings, at which point a further increase
in performance requires an increase in dataset quality.

In Atari, RCI still reaches a performance-at-scale asymptote
at all expertise levels, but uniquely among our results, this
asymptote does not consistently increase with improved data
quality. We plan to investigate this surprising result further
in the future.

4.3. Scaling Model Size vs Dataset Quality

Consider a practical scenario where one has a particular
budget to spend on improving the performance of a model.
Should that budget be spent on a larger model, or higher-
quality data? In this section, we visualize the relative rate
of improvement between scaling up the model size, and
improving the quality of the dataset by improving the quality
of the data-generating expert.

In Figure 2, we can see that in this setting, the performance
gained by improving the expertise level of a dataset far
exceeds the performance gained by scaling up the model
size. In most cases, a relatively modest increase in the
performance of the best data-collection expert has greater
impact on performance of the trained model than multiple
orders of magnitude increase in model size. Results for two
settings are given in Figure 2, while more extensive results
are given in Appendix A. We note that the scale of effect is

Suboptimal Data Can Bottleneck Scaling

CQL on Breakout, 75% expertise RCl on Enduro, 25% expertise

RFl on Ant, 40.0% level RCI with 1.0 conditioner, on Ant, 40.0% expertise level

2
8 20

score
scor

— para

20% 0% 60% 80% 100% 20% 40% 60% 80% 100% 0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
gradient steps. gradient steps gradient steps gradient steps.

Figure 4. Data, compute, and parameter scaling for algorithms on PyBullet and Atari. All runs use 8 seeds.

Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.0

Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0

195%10°

.
§ 19x10 § 22x10 § 175x100 H

5 x10 s
185 x10° 2x10 17x 10

mxm"

10° 100 10° 10° 107 10° 108 108 107 10¢ 109 108 107 108
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters

Figure 5. Scaling Laws for RCI HalfCheetah, Ant, Hopper, Walker2D respectively

likely to be algorithm and domain specific, but expect the 5. Fitting Scaling Laws

general principle to be broadly applicable.
Given the reliable scaling behavior found in supervised

learning (Kaplan et al., 2020), it is natural to explore whether
it is possible to extrapolate the performance of scaling data,
An important choice for the RCI algorithm is what return compute, and parameters under a fixed level of data quality.
to condition on at inference-time. If the requested return is If this is true, it becomes plausible to use smaller-scale runs
low, the performance will be low, but if the requested return to estimate the limiting behavior of larger runs; for example,
is too high, generalization may fail, leading to a complete as a low-cost way to determine whether to scale to larger
performance collapse. In this section, we study the effect ~ models, or spend resources improving data expertise.

of different conditioning values for the Return Conditioned
Imitation Learning algorithm.

4.4. Ablation On Conditioning

To this end, we explore whether our performance-at-scale re-
sults could have been predicted by scaling laws. We fit Bro-
In Figure 3, we highlight the results for the RCI algorithm ken Neural Scaling Laws (BNSL) (Caballero et al., 2022)
for HalfCheetah and Ant, while more extensive results are given by the functional form:

given in Appendix A.

—cixfi

which are less than the best expert in the dataset behaves as H 1+ d;

requested, and such, performance gradually increases as the =1

conditioner is increased. However, beyond the best expert, Ty fit the above functional form we find the constants
where we rely completely on extrapolative generalization, (a,b, o, c1..., di...dy, fi...fr) that minimize the MSLE,
this trend ends. Performance when conditioned outside of ~ ean squared log error between the predictions (i.e. the
the training range is noisy and unpredictable, oftentimes , yalues) of BNSL and the experimental returns. We first
collapsing, and occasionally increasing. As the conditioner perform a grid search using scipy.optimize.brute to find the

increases, this sensitivity worsens. Overall, these results o jpjtial values. These values are then used as initialization
not indicate that conditioning higher than the best expertis for the nonlinear least squares (NLS) algorithm.

a reliable way to improve performance, even at the limit of
scale. We use the numerically stable variant of MSLE for the above

optimization given by:

It can be seen from these plots that conditioning on returns k 2\ V1
y=a+ bz~

n

MSLE =) ((log(y: + 1) — log(§i +1))*)/n

=1

Suboptimal Data Can Bottleneck Scaling

Overall, we find that this procedure is successful, and we
are able to extrapolate to the performance of larger models
in a variety of settings. Several examples of scaling curves
fit by our model are given in Figure 5, and further examples
in Appendix A (Figure 12, 11,13,14).

6. Discussion and Conclusions

We have shown via experiments across multiple domains
that suboptimal data can bottleneck scaling. This result is, to
a certain extent, unsurprising: it seems obvious that without
high-quality data on a particular task, an agent is inevitably
limited in its ability to perform that task. However, the im-
pressive capabilities of highly-scaled deep neural networks
give reason for doubt. Powerful generalization has recently
been found to be capable of surprising feats, and it was
possible that the same would be true here. However, our
experiments confirm the intuition that, indeed, near-expert-
level data is required for expert-level performance, even
as deep-learning-based agents are scaled to their limits of
compute, parameters, and dataset size.

Hoffmann et al. (2022) demonstrated that efficient scaling
requires increasing the compute, data size, and parameters
at the correct ratio. If one of these factors is increased more
slowly, it will bottleneck improvement, leading to diminish-
ing returns from scale on the other factors. Our conclusions
can be interpreted as an extension of these results, showing
that that data quality is another important dimension of vari-
ation that behaves in this the same way. If data quality is not
sufficiently high, this will bottleneck learning and impede
returns to scale on compute, data size, and parameters.

Currently, large language models are not trained with any
particular task in mind. However, it is straightforward to
define any number of downstream tasks using natural lan-
guage. Models tested on tasks demonstrate good scaling
with respect to these goals. Our work indicates that these
Internet-trained models may at some point become bottle-
necked by data quality on some of these tasks, if there is not
enough expert data for that task available on the Internet.

When bottlenecked by any of compute, parameters, or data
size, there is a clear path forward. But when the bottleneck
is expert data, the road is less clear. One way to solve this
problem is to simply find a high-performing expert: for
example, in offline reinforcement learning, one might hire
expert humans to complete the task, record their actions,
and add this to the dataset. However, this approach is not
scalable. A more autonomous method would leverage the
knowledge of model itself to source its own expert data. If
our offline RL agent learns a policy which outperforms the
best data-collection expert in its dataset, then by interacting
according to its policy and adding that data to the dataset,
the quality of its dataset will be improved. If this feat can

be repeated, the agent can bootstrap itself into arbitrarily-
high performance. This, of course, is precisely the setting
of online reinforcement learning (Sutton & Barto, 2018).
Thus, one interpretation of our contribution is to motivate
the online reinforcement learning setting, in light of the im-
pressive capabilities of supervised learning models trained
at scale.

References

Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-
mistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, pp. 104—
114. PMLR, 2020.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,
and Bellemare, M. G. Beyond tabula rasa: Reincarnating
reinforcement learning. Advances in neural information
processing systems, 2022.

Aghajanyan, A., Yu, L., Conneau, A., Hsu, W.-N., Ham-
bardzumyan, K., Zhang, S., Roller, S., Goyal, N.,
Levy, O., and Zettlemoyer, L. Scaling laws for gen-
erative mixed-modal language models. arXiv preprint
arXiv:2301.03728, 2023.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Bellman, R., Glicksberg, 1., and Gross, O. On the “bang-
bang” control problem. Quarterly of Applied Mathemat-
ics, 14(1):11-18, 1956.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? arXiv
preprint arXiv:2206.01079, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Buckman, J., Gelada, C., and Bellemare, M. G. The impor-
tance of pessimism in fixed-dataset policy optimization.
arXiv preprint arXiv:2009.06799, 2020.

Caballero, E., Gupta, K., Rish, I., and Krueger, D. Broken
neural scaling laws. arXiv preprint arXiv:2210.14891,
2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Suboptimal Data Can Bottleneck Scaling

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016-2021.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Goodfellow, 1., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Col-
menarejo, S. G., Zolna, K., Agarwal, R., Merel, J.,
Mankowitz, D., Paduraru, C., et al. Rl unplugged: Bench-
marks for offline reinforcement learning. arXiv preprint
arXiv:2006.13888, 2020.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):1-35, 2017.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-
tive g-learning for offline reinforcement learning. arXiv
preprint arXiv:2006.04779, 2020.

Kumar, A., Agarwal, R., Geng, X., Tucker, G., and Levine,
S. Offline g-learning on diverse multi-task data both
scales and generalizes. [International Conference on
Learning Representations, 2023.

Laroche, R., Combes, R. T. d., and Buckman, J. Non-
markovian policies occupancy measures. arXiv preprint
arXiv:2205.13950, 2022.

LeCun, Y., Bengio, Y., et al. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Maloney, A., Roberts, D. A., and Sully, J. A solvable model
of neural scaling laws. arXiv preprint arXiv:2210.16859,
2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533, 2015.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechan-
ics: Theory and Experiment, 2021(12):124003, 2021.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., and Dormann, N. Stable baselines3, 2019.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400—
407, 1951.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533-536, 1986.

Schmidt, D. and Schmied, T. Fast and data-efficient training
of rainbow: an experimental study on atari. arXiv preprint
arXiv:2111.10247, 2021.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
arXiv preprint arXiv:2210.08402, 2022.

Seyde, T., Gilitschenski, I., Schwarting, W., Stellato, B.,
Riedmiller, M., Wulfmeier, M., and Rus, D. Is bang-
bang control all you need? solving continuous control

with bernoulli policies. Advances in Neural Information
Processing Systems, 34:27209-27221, 2021.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

§trupl, M., Faccio, F., Ashley, D. R., Schmidhuber, J., and
Srivastava, R. K. Upside-down reinforcement learning
can diverge in stochastic environments with episodic re-
sets, 2022.

http://pybullet.org

Suboptimal Data Can Bottleneck Scaling

A. Additional Figures

Suboptimal Data Can Bottleneck Scaling

Model size Model size
16404 1.0+05 16406 3.0+06 16407 36407 1.0408

Model size

Model size

Model Size vs Maximum Expert Value for RFI, Ant

1662123 2155087 230580 2416797 2809.855
Maximum expert value

Model Size vs Maximum Expert Valus for RCI, Ant at 1.2 conditioner

|

200(

Performance measured in average retumns

- 1800

k3 2500

~ 250

3

= 2000

s

?’ 1750
1500

K - 1250

; - 1000

1682123 2155087 230589 2416797 2809.855
Maximum expert value

Model Size vs Maximum Expert Value for RCI, Hopper at 0.8 conditioner

753355 1036801 1221255 1410.362

Maximum expert value

1777.85

Model Size vs Maximum Expert Value for VCI, Ant at 1.2 conditioner

|

- 750

1500

1400

1300

1200

- 1100

- 1000

. 2750
K 2500
IS 250
3
b 2000
g 1750
5
1600
3 - 1250
- 1000
2 - 750

1682123 2155087 200580 2416797 2809.855
Maximum expert value

Performance measured in average returns Performance measured in average retums

Performance measured in average retums

Model size

Model size

Model size

Model size

Model size

Mode! Size vs Maximum Expert Value for RFI, HalCheetah

30408 Y
1408 1800 3
)
3407 g
1600 2
Tes07 <
H
30106 1400 3
3
£
10406 8
- 1200 §
£
1e+05 £
£
4

10404 |- 1000

695907 1269859 140972 1720542 1990.565
Maximum expert value
Nodel Valus or RC,
3e008

1600 2
10408 3
&
- g
3es07 oo
10407 £
1200 8
36406 g
£
1406 g
- 1000
§
10405 £
s
Tev04 -a0 &

695.907 1260.850 140072 1720542 190.565

Maximum expert value

Model Size vs Maximum Expert Value for RCI, Walker2D at 0.8 conditioner

8
K3 1100 £
s
5 1000 &
H g
2 g
&
wo §
$ B
@ 800 3
- &
£
2 - 700 H
& 5
-0 E
2 2
2 5
3 —s00 &

630830 918.328 1066.033 1236.64

Maximum expert value

1575.727

Modsl Size vs Maximum Expert Value for VCI, HalfChestah at 0.9 conditioner

3e+08 1600
1.6+08 3
o
5 g
seror g
1200 g
1ev07 <
3
36406 1000 §
2
10406 8
oo £
g
1ov05 E
H
fovos —w0 &

5007 12698 1M09T2 1720542 1990565

Maximum expert value

Model Size vs Maximum Expert Value for VCI, Hopper at 0.8 conditioner

16404

g 1200 o
100 £

- °
5 3
? g
& 1000 &
3

< 200 3
H 8
2 2
800 §

» £
g H
T -0 8
2 5
E

-60 §

5

&

753.355

1036.801 1221255 1410.362
Maximum expert value

1777.85

Model size
16404 1.0+05 16406 3.0+06 16407 36407 10408

Model size

Model size
16404 1.0+05 1.6+06 3.0+06 16407 3407 16408

Model size

Model size

Model Size vs Maximum Expert Value for RCI, Ant at 0.9 conditioner

1662123 2155087 230580 2416797 2800.855
Maximum expert value

Model Size vs Maximum Expert Value for RCI, HalfChestah at 1.0 conditioner

.I

1260859 140972 1720.542 1990565
Maximum expert value

3e+08
16408
3e+07
16407
3e+06
16406
16405
1e+04

695.907

Model Size vs Maximum Expert Value for VCI, Ant at 0.9 conditioner

1662123 2155087 230580 2416797 2809.855
Maximum expert value

|

Model Size vs Maximum Expert Value for VCI, HalfCheetah at 1.0 conditioner

o

140072 1720542 1990565

36408

1608

3e+07

1607

3e+06

16406

16405

12404

695.907

1269.859
Maximum expert value

Model Size vs Maximum Expert Value for VCI, Walker2D at 0.8 conditioner

2400

Performance measured in average retumns

- 1800

- 1600

1800

1600

1400

1200

80

220

180

- 1000

2400

0

Performance measured in average returns

0

- 1600

- 1400

1800

1600

1400

1200

80

- 1000

3 £
3
- 800
H
S 700
A 600
b
- 500
g - 400
3

- %0
3
5
- - 200

639.839 918328 1066.033 1236.64

laximum expert value

1575.727

Figure 6. Tradeoff between model size and dataset quality

Performance measured in average retums

Performance measured in average retums

Performance measured in average returns

Model Size vs Maximum Expert Value for RCI, Ant at 1.0 conditioner

2600
2400
2200
2000
- 1800
- 1600

1682123 2155087 230580 2416797 2809.855
Maximum expert value

Model size
16404 16+05 16+06 3€+06 1.6+07 3407 1.6+08

Performance measured in average retums

Model Size vs Maximum Expert Value for RCI, HalfCheetah at 1.2 conditoner

@ 1500
e @
E} £
. ®
N 1000 2
5 &
H g
é §
. 50 &
8, £
33 H
3k H
= 3
" E
g 8
& -0 §
E
3 2
H - -1000 §

695007 1260850 140972 1720542 1990.565

aximum expert value

Model Size vs Maximum Expert Value for VCI, Ant at 1.0 conditioner

1662123 2155087 230589 2416797 2809.855
Maximum expert value

Model size
16+04 16+05 16+06 36+06 16+07 3e+07 1.6+08

2600
2400
2200
- 2000

- 1800

Performance measured in average retums

- 1600

Model Size vs Maximum Expert Value for VCI, HalfCheetah at 1.2 conditioner

1269850 140072 1720542 1990565
laximum expert value

E 1500
5
5 1000

500

Model size
16+06

|

16405

"
®

H

g

g

g

&

£

g

§

E

]

§

£

g

- s00S
H

16404

695.907

Suboptimal Data Can Bottleneck Scaling

Score

Score

2400

2200

2000

1800

2400

2200

2000

1800

1600

1400

1200

Score vs Conditioning value for different expertise levels for RCI, Ant

2000
1500
1000
2
500
—— Expertise=02
—— Expertise=0.4
— Expertise=06 T 0
— Expertise=08
— Expertise=1.0
-500
080 085 090 095 105 110 115 120
Conditioning Value
g value for diferent Vel Ant
—— Expertise=0.2 200
—— Expertise=04
— Expertise=06
— Expertise=08 1500
— Expertise=1.0
-
1000
]
g
@
500
0
-500
080 085 090 110 115 120

095 105
Conditioning Value

Score vs Conditioning value for different expertise levels for RCI, HalfCheetah

—— Bxpertise=02
— Expertise=0.8
—— Expertise=1.0

080 085 090 095 05
Conditioning Value

Score vs Conditioning value for different expertise levels for VCI, HalfChestah

—— Expertise=02
—— Expertise=0.4
—— Bxpertise=0.6
— Expertise=0.8
— Expertise=1.0

080 085 090 095 05
Conditioning Value

Score

Score

1800

1600

1400

1200

1000

800

600

1600

1400

1200

1000

800

600

e N

°

80

085

090

alue for different

095 105
Conditioning Value

RCI, Hopper

Expertise=02

Score vs Conditioning value for difierent expertise levels for VCI, Hopper

080

Expertise
Expertise
Expertise
Expertise
Expertise

085

=02
=04
=06
08
=10

090

095 105
Conditioning Value

Score

Score

1400

1200

1000

600

1600

1400

1200

1000

80

600

400

Figure 7. Ablation study for different conditioning values for RCI and VCI

Score vs Condtioning value for diferent expertise levels for RCI, Walker2D

Expertise=0.2

|

080

085

090

9 105
Conditioning Value

110

115

120

Score vs Condtioning value for different expertise levels for VCI, Walker2D

080

Expertise:
Expertise
Expertise:
Expertise

=02
<04
=06
=08

Expertise=10'

085

090

095 105
Conditioning Value

110

Suboptimal Data Can Bottleneck Scaling

score

score

score

score

score

1800

1700

1600

1500

1400

1300

1200

100

200

2000

1800

1600

1600

1400

1200

1000

80

2000

1800

1600

1400

1200

1000

1400

1200

1000

800

600

400

200

RCI with 1.0 conditioner, on Ant, 20.0% expertise level

params=de+04
—— params=2e+05

— params=1e+08

0 100000 200000 300000 400000 500000
gradient steps

RCI with 1.0 conditioner, on Ant, 100.0% expertise level

params=de+04
—— params=2e+05
—— params=1e+06
—— params=3¢+06
— params=1e+07
— params=3e+07
— params=1e+08

0 100000 200000 300000 400000 500000
gradient steps

RCI with 1.0 conditioner, on HalfCheetah, 80.0% expertise level

i e

params=2e+04
params=1e+05

params=1e+08
params=3e+08

[EETLT

0 00000 200000 300000 400000 500000
gradient steps

RFlon Ant, 60.0% level

1 X =

params=de+04
26+0!

0 100000 200000 300000 400000 500000
gradient steps

RFI on HalfChestah, 40.0% level

>

params=2e+04

params=3e+08

0 100000 200000 300000 400000 500000

gradient steps.

score

score

2100

2000

1900

1800

1700

1600

1500

1000

600

400

1800

1600

1400

1200

1000

800

2400

2200

2000

1800

1600

1400

1200

1000

RCl with 1.0 conditioner, on Ant, 40.0% expertise level

0

RCI with 1.0 conditioner, on Ant, 60.0% expertise level

. >

100000

200000

300000 400000

gradient steps

ms=20+05
params=1e+06
params=3e+06
params=1e+07
params=3e+07
params=1e+08

RCI with 1.0 conditioner, on HalfCheetah, 40.0% expertise level

2400
SRl LA
200
2000
1800
e
/ 8 1600
params=4e+04
— params=2040¢ 1400
—— params=1e+06
— params=3e+06 1200
— params=1e+07
— params=3e+07 1000
— params=1e+08
0 100000 200000 300000 400000 500000
gradient steps
RCl with 1.0 conditioner, on HalfCheetah, 20.0% expertise level
1400
S 1200
/ 1000
/ 2 80
&
| params=2¢+04 g
| — params=1e+05
—— params=1e+06 0
— params=3e+06
— params=1e+07 00
— params=3e+07
| — params=1e+08
— params=3e+08 20
0 100000 200000 300000 400000 500000
gradient steps
RCI with 1.0 conditioner, on HalfCheetah, 100.0% expertise level
1800
S~
1700
1600
1500
e
&
params=2e+04 § 1400
— 1300
— 1200
— params=1e+08 1100
— params=3¢+08
0 100000 200000 300000 400000 500000
gradient steps.
RFI on Ant, 80.0% level
- 2800
(2000
‘ 2400
\ g
§ 200
2000
- 1800
— params=1e+08
1600
0 100000 200000 300000 400000 500000
gradient steps
RFI on HalfCheetah, 60.0% level
L e
=
1600
1400
2
params=20+04. $ 1200
—— params=1e+05
—— params=1e+06
—— params=3e+06 000
— params=1e+07
— params=3e+07
— params=1e+08
— params=3e+08 &0
0 100000 200000 300000 400000 500000 0

gradient steps

0

100000 200000 300000 400000 500000
gradient steps
RFl on Ant, 20.0% level
00000 200000 300000 400000 500000
gradient steps
RFI on Ant, 100.0% level
P ST
Aabal ANPTF
params=4e+04
—— params=2e+05
params=1e+06
— params=3e+06
— params=1e+07
— params=3e+07
— params=1e+08
100000 200000 300000 400000 500000

params=2e+04
o

arams=1e+(
params=3e+08

gradient steps

RFI on HalfCheetah, 80.0% level

/;/Tjr

100000

0000 3000
gradient steps

00 400000

T

params=20+04
params=1e+05

params=1e+08
params=3e+08

Figure 8. Scaling curves for PyBullet for RCI and RFI

1200

1100

score.

Figure 9. Inverse scaling in Hopper

RCI with 1.2x conditioner on Hopper, 20.0% level

—— params=2e+04
—— params=1e+05
—— params=1e+06
— params=1e+07
— params=1e+08

100000

0 300000
gradient steps

400000

500000

500000

500000

2400

score

1800

1600

1400

1200

800

600

2100

2000

1900

score

1800

1700

1600

1500

1000

2000

1800

1600

1400

1200

1000

800

RCl with 1.0 conditioner, on Ant, 80.0% expertise level

pa 0406
params=1e+07
rams=3e+07
rams=1e+08

pa
pa

0 100000 200000 300000 400000 500000

gradient steps.

RCI with 1.0 conditioner, on HalfCheetah, 60.0%

expertise level

params=2e+04

params=1e+08
params=3e+08

0 100000 200000 300000 400000 500000

gradient steps

RFI on Ant, 40.0% level

o 100000 200000 300000 400000 500000

gradient steps

RFI on HalfCheetah, 20.0% level

| —

params=3e+08

o 100000 200000 300000 400000 500000

gradient steps

RFI on HalfCheetah, 100.0% level

gradient steps

params=26+04
params=1e+05

params=1e+08
params=3e+08

0 100000 200000 300000 400000 500000

Suboptimal Data Can Bottleneck Scaling

2000

1800

score

1400

1200

140

%00

800

600

score

500

400

300

200

CQL on Breakout, 25% expertise

params=75.8M

20% 0% 0% 100%

60%
gradient steps

©QL on Enduro, 25% expertise

20% 0%

%
gradient steps

RCI on Breakout, 25% expertise

20% % 80% 100%
gradient steps
RCI on Enduro, 25% expertise
params=0 6M
params=2.2M
/ params=8 6M

params=33.9M
params=75.8M

0% 0% 8% 100%

60%
gradient steps

400

350

300

250

score.
8
8

score

score

score

200

2000

1800

1600

1400

1200

1000

1000

80

600

400

200

€QL on Breakout, 50% expertise

40
350
200
250
2
§ 200
—— params=0.6M 150
—— params=22M
—— params=8.6M 100
— params=19.2M
—— params=33.9M %0
— params=75.6M .
20% 0% 0% 100%
gradient steps.
CaL on Enduro, 50% expertise
20
2000
- 1800
/ S 1600
3
params=0.6M 1400
— params=2.2M
— params=8.6M 1200
— params=192M
— params=33 M 1000
— params=75.8M
20% 0% 0% 0% 100%
gradient steps
RCl on Breakout, 50% expertise
300
250
20
2
8 150
100
5
0
20% 0% 0% 0% 100%
gradient steps.
RCl on Enduro, 50% expertise
params=0.6M 1200
params=2.2M
params=6.6M
params=19.2M 1000
params=33.9M
params=75 M
80
4
g
% 600
) ~ 400
200
20% Z 8% 100%

60%
gradient steps

CQL on Breakout, 75% expertise

— params=33.9M
— params=75.8M

20% 0% 60% 0% 100%
gradient steps
©QL on Enduro, 75% expertise
params=0.6M
params=2.2M
params=8.6M

— params=19.21
— params=33.9M
— params=75.6M
0% 60%

gradient steps

80% 100%

RCI on Breakout, 75% expertise

—— params=0.6M

— params=33 9M
— params=75.8M

20% 0% 0%
gradient steps

80% 100%

RCI on Enduro, 75% expertise

params=0.6M
params=2.2M
params=8.6M

— params=19.2M
— params=33.9M
—— params=75.8M
2% 0%

80% 100%

%
gradient steps

Figure 10. Scaling curves for Atari for RCI and CQL

2400

2000

1800

1600

1400

1200

1000

80

300

250

200

1200

1000

80

score

600

400

200

CQL on Breakout, 100% expertise

params=06M
— params=2.2M
params=8. 6M
params=19.2M
params=33.9M
params=75.6M

20% 0% 80% 100%

60%
gradient steps.

©QL on Enduro, 100% expertise

(EEE

params=0.6M
params=2.2M
params=8.6M
— params=19.2M
— params=33.0M
— params=75.6M
20% 40%

gradient steps

80% 100%

RCI on Breakout, 100% expertise

=

params=0 6M

—— params=8.6M
— params=33.9M
— params=75.8M

20% 40% 80% 100%

0%
gradient steps

RCl on Enduro, 100% expertise

— params=33.9M
— params=75.6M

20% 40% 80% 100%

60%
gradient steps

Suboptimal Data Can Bottleneck Scaling

1 02; X Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.0 . :rci:
Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 0.9 P 9 A | Expertise: 0.2 ; Algorithm: rci ; Conditioner Loc: 1.1 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 0.9
17x10° 18x10° 175 x10
725 x10°
N 1725 %10 |
204x10
165x10° 17x10° 17%10°
v
8|
1675 x10 202%10%
. < . e v
£ 1ex10° g 16%x10° H H °l
g § 1esx10° k4
H H H
3 b H . 4 3
@ a & 1625 %100 @ 2x10
x10?
155%10 15x10°
16x10°
198x103
1575x10°
15x10°
Lax103
155%10° 196109
108 107 100 20° 1 207 10° 10° 8 107 100 109 o 207 100
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 0.4 ; Algorithm: rfi ; Conditioner_Loc: None Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 0.9
217x10°
21x10°
215x10° . 5| 23x10°
216x10°
2x108
%100
21x10° 215%10° 228%10 .
H £ 1ox10? H H
3 s S 214x10° T 226x109
@ 2.05x10° @ k4 @
.
.
18x109 213x10°
224%109
2x10°
212x10°
17%10°
222%109
10° 108 107 100 10° 10° 207 10° 10° 108 107 100 10° 108 107 10°
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.6 ; Algorithm: rfi ; Conditioner_Loc: None Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 0.9
245x10° 236%10° 24x109
| 2x10°
24x10 b pasxio? 239x10
x10° 238x10%
2352310 . . 234x10°
< H < < 237x10°
§ 23x10 $ § 233100 i
g 2 £ 233x10 2
2 s 3 £ 2365108 s
2 225%10° “ @ 232x10° L
235x107
. 108 X100
22x10 23110 234x109
215x10° 23x107 233x109
229x10° 232x103
100 10 107 100 108 106 107 100 100 106 107 100 100 106 107 100
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.8 ; Algorithm: rci ; Conditioner Loc: 1.0 Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 0.8 ; Algorithm: rfi ; Conditioner_Loc: None Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 0.9
24x10° vV——a——3 247x10°
27x100
245x10° 22x10°
2.46x10°
2x109 268103
24107 18x103 245x10°
266103
5 § Lox10° 5 H H .
g g § 244100 g
H $ £ 244x10 H , n
S 235x10° s] 2 26ex10 .
g & 14x10° & . . &
243x10°) v
262x109
12x100
X107
23x10 242x10°
26x10%
10 241x10°
225%10°
10° 10 107 100 200 108 207 10° 108 106 107 108 10° 106 107 10°
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 1.0 ; Algorithm: rfi ; Conditioner_Loc: None
28x10° 275 %108 v
25%10° 278 %107
26x10°
x10°
223X10 276 %107
24x10° 2x10°
274 %108
H < a0 <
3220100 H g
z E £ 2mx108
H T 15x10° T M
g g H | — - =
2x10° 27x109
125 10°
268x10°
18 %100
10° 266x10°
108 g 107 100 108 8 207 108 10° 200 107 10°
Number of Model Parameters Number of Model Parameters Number of Model Parameters

Figure 11. Broken Neural Scaling Laws fits and extrapolations for Ant. Black points are mean of gray points at each model size. Red line
is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are the
mean of the light blue points.

Suboptimal Data Can Bottleneck Scaling

Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 0.9

Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.0

Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.1

, 108 . 2 Expertise: 0.2 ; Algorithm: rfi ; Conditioner_Loc: None
910
10°
975 x10?
102
8x10? 6x107 "
- 95x10% g
& H 3 c L
g . g H § 025x107 v
H H L éuazs 10 R . p
“ © ax10? & 9x10?
10!
x10?
X0 875 102
3x107
85102
100 825x10?
108 106 107 108 10 10 107 108 108 108 107 100 108 108 207 100
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.0 10° Expertise: 0.4 ; Algorithm: rfi ; Conditioner_Loc: None
A P g i A
1ax109
135x10° 128 108
126x10%
L| 13x10° o
102 126 108
125 108) H o . o«
_ 124x10° B H] <
g § 12x10 2 § .
H H H 2 120%100
2 oaxiot £ 115x10° &
10!
11x107 122109
12x10° Losx10*
12x100
109 100
108 106 207 10 109 08 107 100 108 108 107 100 108 108 207 100
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.0 107 /‘ﬁ Expertise: 0.6 ; Algorithm: rfi ; Conditioner_Loc: None
L4ax10°
137x109
14x100
136109 Lazx 10t
X100 135x10°
135x10 e)
. . H . Lax10
§ 130x10° 5 H 5
£ 2 13x10° K H
-] &]
§ 133x10 H T sexae
132x109 128107
Latxao? 10t 136x107
L3x 108 12x10°
134x10°
100 100 107 108 108 106 107 100 108 108 107 108 108 106 107 10
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 0.8 ; Algorithm: rfi ; Conditioner_Loc: None
x10°
156109 17x 100 e
172%10°
154x109
Lox 100 17x10° 17x10°
152x109
1] 168x10%
< . H < <
§ 15x10° 8 1sx10 |- § L68x10°
£ E R grooee Y
S Lasx10t 2 & 1.64x10° @ .
Le6x10°
146x103 14x10° Le2x107
1a4x10% L6x 108
Leax10®
142x109 1310 158x100
10° 10° 107 10° 108 108 107 208 10° 10° 107 10° 10° 10¢ 207 108
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 1.0 ; Algorithm: rfi; Conditioner Loc: None
2x108
177 %108 2005 x 10
172%10° .
195x10° 176 %107 i
1995 % 10°
17x10° 175 %100 .
. /4———\ § 19x108 H < sswet
1 £ 2 174x10° H
T 168x107 o 5 3 Lessxior
& & & H .
185 %107 173 %107 Losx 10 2 + $ £
166109
172x10° 1975 x10°
18x10° 197x10°
164x10% 171x10°
- 1965 % 10°
20° 20° 207 10° 10° 106 107 100 108 106 207 10° 100 107 108

Number of Model Parameters

Number of Model Parameters

Number of Model Parameters

1
Number of Model Parameters

Figure 12. Broken Neural Scaling Laws fits and extrapolations for Half Cheetah. Black points are mean of gray points at each model size.
Red line is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are
the mean of the light blue points.

Suboptimal Data Can Bottleneck Scaling

Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.1
o Expertise: 0.2 ; Algorithm: rfi ; Conditioner_Loc: None
9x107 12x108
. 3 :
1ot ax10? 115%10
H , H H 11x108
£ o H H 2 e 1
H g H 3 rosx10°
ax10?
6x10? 10°
<102
4x10 3x107
95x102
5x10?
108 108 207 108 10° 10° 107 100 105 108 107 100 108 bt 107 100
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 0.4 ; Algorithm: rfi ; Conditioner_Loc: None
100 =
10°
. Lax 100
10
. .
. o 13x108
6x102
g H g £ 12x10°
£ 6x10? z H H
& H & z
11x108
ax10?
6x10?
4x107 10°
3x102
108 108 207 108 10° 108 107 100 105 108 107 108 10° 108 107 20°
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.0
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 0.9 2 [Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 0.9
Lasx10? v v 175 %107
108
. .
1ax10° o 17x10°
.
. 100
135%10° 100 . o 165 %10
= H § . v rt
H 2 : H 8
2 10 Z ox10 3 & 1oxw
& @ H
100 55 x10°
125 10 8x10? 155 %10
12x10° 15x 108
7x102
115%10° 145x103
108 108 107 100 108 10° 107 100 108 108 107 108 108 106 207 100
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.8 ; Algorithm: rfi ; Conditioner_Loc: None Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 0.9
165%107 . 188 %107
16% 10
16x10° . 4 %100
155%10° 18620
155%10° .
Lsx10° 184 %10
15%10° Pa— 4 5 s
H H £ 162x10° .
H . H s § greno
2 1asxa0 H z] O
H 109 H 3 .
H H & 18x10° .
Lax10° .
Lax10°
178 %10°
135x107 X0
176 % 10°
13x100 13x10°
10° 108 107 100 108 108 107 108 108 108 207 200 105 108 107 10°
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0 , Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 1.0 ; Algorithm: rfi ; Conditioner_Loc: None
18x10
185 108
185 x10°
17x108
18x10°
P 8 X107 .
16x10% Lex10 .
s < < v
§ 175%10° H H * .
: 2 o100 £ 1750100
& -1 &
17%10°
14x103 17%10°
165x10°
13x107 165x10°
109 106 207 10° 10° 106 107 10° 10° 109 107 10°
Number of Model Parameters Number of Model Parameters Number of Model Parameters

Figure 13. Broken Neural Scaling Laws fits and extrapolations for Hopper. Black points are mean of gray points at each model size. Red
line is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are the
mean of the light blue points.

Suboptimal Data Can Bottleneck Scaling

Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.2 ; Algorithm: rci ; Conditioner_Loc: 1.1 Expertise: 0.2 ; Algorithm: rfi ; Conditioner_Loc: None
8x107
7x102 ' Ll
°l 6x102 .
6x107 ex10t
] € £ ax10? <
H £ H H
3 sx0 H H 5
& &, .. & 3x102 &
4%10° 7x107
%102 2x10?
4x10° 3x10?
10° 10° 107 10° 10° 10f 107 10° 10° 10° 107 10° 10° 108 107 108
Number of Model Parameters Number of Model Parameters Number of Mode Parameters Number of Model Parameters
Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.0 Expertise: 0.4 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.4 ; Algorithm: rfi ; Conditioner_Loc: None
9x102 10° 3 . o 2 1.05x 107
b 2
9% 10 6x10?
8x102 10°
8x107
- - 5. § ex10t 5 . J
270 270 H 2 o5 .
@ o @ 3x102 & H .
10
. 6x10 3
6x10 ox10?
2x10?
5x107
5x107 85x 107
10% 108 107 108 108 108 107 108 108 108 107 108 105 10° 107 10°
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters
Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 0.9 Expertise: 0.6 ; Algorithm: rci ; Conditioner_Loc: 1.1
= = Expertise: 0.6 ; Algorithm: rfi; Conditioner_Loc: None Expertise; 0.8 ; Algorithm: rci ; ConditionerLoc: 0.9
100 112x107 13x10°
B 11x10 . .
4 3 . 12%107
10° 1.08x10* .
- - 106x10°
§ § sx10 < H § 11x100
2 2 A £ 1oax10t £
2 ox10 E H]
102x10° . |
10
4%107
10°
8x102 x10?
3x10 98x10 9x10?
9.6% 102
10° 108 107 108 10° 108 107 100 108 ! 108 10° 108 107 10°
Number of Model Parameters Number of Model Parameters Namber of Model Parameters Number of Model Parameters
Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.1
Expertise: 0.8 ; Algorithm: rci ; Conditioner_Loc: 1.0
0 Expertise: 0.8 ; Algorithm: rfi ; Conditioner_Loc: None Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 0.9
135x10°
15x 107 .
10° .
R L4sx10°
< ° 14x 107
H g § 125x10° ¢ H
g : §iosx § 135x100
Hp 3 H 12
© & @ 13x10°
12x10°
125%10°
ax10? 107
115x%10° 12x10°
115x10°
10° 108 107 10° 105 108 107 10° 105 107 100 105 107 10°

108 10!
Number of Model Parameters Number of Model Parameters Number of Model Parameters Number of Model Parameters.

Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.1

Expertise: 1.0 ; Algorithm: rci ; Conditioner_Loc: 1.0

Expertise: 1.0 ; Algorithm: fi ; Conditioner_Loc: None

108
158x10°

156x10°

154%10°

152x10°

EvaliMean
Eval:Mean
EvaliMean

L15x 108
102 1.48x10°

146x10°

6x 102

10° 108 207 100 108 108 107 108 0 06 10 o
Number of Model Parameters Number of Model Parameters Number of Model Parameters

Figure 14. Broken Neural Scaling Laws fits and extrapolations for Walker2D. Black points are mean of gray points at each model size.
Red line is BNSL fit to black (or technically gray too) points. Light blue points are held out to evaluate extrapolation, and green points are
the mean of the light blue points.

